Alternatives to Antibiotics

PROF DR. ABDELRAOUF A. ELMANAMA
Content

- **Antimicrobial peptides**
- **Gene-editing enzymes**
- **Metals**
- **Phages**
- **Predatory bacteria**
- **Antisense technology**
- **Biofilm disruption**
- **Quorum sensing inhibitors**
- **Natural Products**
- **New antibiotics**

Antimicrobial peptides

- Some plants, animals and fungi make peptides, small proteins that destroy bacteria.
- Peptides from amphibians and reptiles (unusually resistant to infection), could yield new therapeutics.
- Peptides with antibacterial activity have been isolated from:
 - Frogs,
 - Alligators
 - Cobras,
Antimicrobial peptides

• These peptides can be modified to increase their potency, and several are in clinical trials.
• Pexiganan, based on a peptide from frog skin, is now in phase III clinical trials to treat diabetic foot ulcers.
• But synthesizing peptides can be expensive.

Gene-editing enzymes

• CRISPR, (Clustered regularly interspaced short palindromic repeats) a gene-editing technique that has taken the scientific world by storm.
• It is based on a strategy that many bacteria use to protect themselves against phages.
• Researchers are turning that system back on itself to make bacteria kill themselves.
Gene-editing enzymes

- Normally, the bacteria detect and destroy invaders such as phages by generating a short RNA sequence that matches a specific genetic sequence in the foreign body.
- This RNA snippet guides an enzyme called Cas9 to kill the invader by cutting its DNA.
- Scientists are now designing CRISPR sequences that target genomes of specific bacteria, and some are aiming their CRISPR kill switches at the bacterial genes that confer antibiotic resistance.

Metals

- Metals such as copper and silver are the oldest antimicrobials.
- They were by ancient Persian kings to disinfect food and water.
- Researchers beginning to understand how metals kill bacteria.
- The use of metal nanoparticles as antimicrobial treatments is a popular research, although little research has been done in people.
Metals

- Because metals accumulate in the body and can be highly toxic, their use may be restricted mostly to topical ointments for skin infections.

- An exception is gallium, which is toxic to bacteria that mistake it for iron, but is safe enough in people to be tested as an intravenous treatment for lung infections.

- Researchers at the University of Washington will soon start a phase II clinical trial of gallium in 120 patients with cystic fibrosis.

- Pilot studies found that the metal was moderately successful at breaking down microbial biofilms in the lungs and improving patients’ breathing.
Phages

- Of all the alternatives to antibiotics, phages have been used the longest in the clinic.
- Scientists in the Soviet Union began developing phage therapies in the 1920s, and former Soviet countries continue the tradition.
- Phages have several advantages over antibiotics.
- Each type attacks only one type of bacterium, so treatments leave harmless (or beneficial) bacteria unscathed.
- And because phages are abundant in nature, researchers have ready replacements for any therapeutic strain that bacteria evolve to resist.
Phages

- Antibiotic resistance is driving more Western patients to phage-therapy clinics in Eastern Europe.
- Phages research is regarded as a priority for addressing the antibiotic crisis.
- A clinical trial of a phage treatment for infections associated with burns is on the run.

Table 2

<table>
<thead>
<tr>
<th>Bacteriophages vs. Antibiotics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advantages</td>
</tr>
<tr>
<td>- Very specific (affect only targeted bacterial species)</td>
</tr>
<tr>
<td>- Replicate at the site of infection</td>
</tr>
<tr>
<td>- Occur naturally (easy to locate)</td>
</tr>
<tr>
<td>- Safe (no reports of serious adverse effects)</td>
</tr>
<tr>
<td>- Active against antibiotic-resistant bacteria</td>
</tr>
<tr>
<td>Disadvantages</td>
</tr>
<tr>
<td>- Additional research required (lack of studies)</td>
</tr>
<tr>
<td>- Development of phage resistance and phage-neutralizing antibodies</td>
</tr>
<tr>
<td>- Not accessible to intracellular pathogens</td>
</tr>
<tr>
<td>- Difficult to administer (special training required)</td>
</tr>
<tr>
<td>- Can transfer toxin genes between bacteria</td>
</tr>
</tbody>
</table>

Source: References 4, 7, 12-14.

ClinicalTrials.gov

A service of the U.S. National Institutes of Health

Evaluation of Phage Therapy for the Treatment of Escherichia Coli and Pseudomonas Aeruginosa Wound Infections in Burned Patients (PHAGOBURN)

This study is currently recruiting participants. (see Contacts and Locations)

- Sponsor: Pherecydes Pharma
- ClinicalTrials.gov Identifier: NCT02118010
 - First received: April 1, 2014
 - Last updated: July 23, 2015
 - Last verified: July 2015

[Click here for more details on ClinicalTrials.gov]
Predatory bacteria

- Bacteria cause infection, but some can also fight it by preying on fellow microbes.
- Several researchers are beginning to test these predatory bacteria in animal models and cell cultures.
- The best-known species, *Bdellovibrio bacteriovorus*, is found in soil.
- It attacks prey bacteria by embedding itself between the host’s inner and outer cell membranes, and begins to grow filaments and replicate.
- The host bacterium eventually explodes and releases more *B. bacteriovorus* into the environment.

Predatory bacteria

- Researchers are also studying the therapeutic potential of the predatory bacterium *Micavibrio aeruginosavorus*.

- The Vampire bacteria
• Antisense drugs are based on the fact that antisense RNA hybridizes with and inactivates mRNA.
• These drugs are short sequences of RNA that attach to mRNA and stop a particular gene from producing the protein.

Antisense technology

Biofilm disruption
• Biofilm is defined a structured community of bacterial, algal, or other types of cells enclosed in a self-produced polymeric matrix and adherent to an inert or living surface.
• Advantages
 • Nutrients tend to concentrate at surfaces
 • Protection against predation and external environment
 • Pooling of resources (enzymes) from varying bacterial species in biofilm
Biofilm disruption

- Chemicals
- Laser
- Enzymatic
- Detergents
- others

Quorum sensing inhibitors

- Quorum sensing is the regulation of gene expression in response to fluctuations in cell-population density
Quorum sensing inhibitors

- Quorum sensing bacteria produce and release chemical signal molecules called autoinducers that increase in concentration as a function of cell density.

Natural Products
New antibiotics

- Teixobactin and iChip Promise Hope Against Antibiotic Resistance
- Teixobactin is the first new class of antibiotic announced in decades

The Most Effective alternative is to prevent infection

Eat healthy food and keep your normal flora happy
شكرًا لكم